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Abstract—Software industry suffer many challenges in devel-
oping a high quality reliable software. Many factors affect their
development such as the schedule, limited resources, uncertainty
in the developing environment and inaccurate requirement
specification. Software Reliability Growth Models (SRGM)
were significantly used to help in solving these problems by
accurately predicting the number of faults in the software
during both development and testing processes. The issue of
building growth models was the subject of many research work.
In this paper, we explore the use of fuzzy logic to build a SRGM.
The proposed fuzzy model consists of a collection of linear
sub-models joined together smoothly using fuzzy membership
functions to represent the fuzzy model. Results and analysis
based data set developed by John Musa of Bell Telephone
Laboratories [1] are provided to show the potential advantages
of using fuzzy logic in solving this problem.

I. INTRODUCTION

Machine Learning (ML) and Soft Computing techniques,
such as Genetic Algorithms (GAs), Genetic Programming
(GP), Evolutionary strategies (ESs), Artificial Neural Net-
works (ANN), Fuzzy Logic (FL), and Particle Swarm Op-
timization (POS), to solve software engineering problems
expanded in the recent years.
Estimation of the COCOMO model parameters using

Genetic Algorithms (GAs) for NASA Software Projects were
provided in [2]. Parameter Estimation of Hyper-Geometric
Distribution Software Reliability Growth Model by Genetic
Algorithms was presented in [3]. Predicting accumulated
faults during the software testing process using parametric
and non-parametric models were explored in many articles
[4]–[6]. In [7], author provided a strategic solution for
estimating software defect fix effort using self-organizing
neural network. Genetic programming (GP) was successfully
used to find a model that fits the given data points without
making any assumptions about the model structure [8], [9].
GP found to be a powerful technique in developing software
reliability growth modeling.
In this paper, we explore the use of fuzzy logic to predict

faults during the software testing process using software
historical faults data. In section II, we provide an overview of
various SRGM. An introduction on fuzzy modeling technique
is presented in section III. The proposed fuzzy model struc-
ture is presented in section IV. Detailed information about
the data set and the experiments developed are provided in
sections V, VII.

II. SOFTWARE RELIABILITY GROWTH MODELS

In the past three decades, hundreds of models were intro-
duced to estimate the reliability of software systems [10]–
[12]. The issue of building growth models was the subject
of many research work [13], [14] which helps in estimating
the reliability of a software system before its release to the
market. Serious application such as weapon systems and
NASA space shuttle applications were explored [15]–[17].
Faults may be encounter in market released software. This

is a challenge for software companies. It might affect their
reputation and finance. Software reliability growth models
were significantly used to help in computing the number
of faults which is still resides in the software [18]. Thus,
specifying the effort required to fix faults, the time required
before software can be released and the cost of repair. Soft-
ware reliability growth models employ system experimental
data for testing to predict the number of defects remaining
in the software.
Software reliability models can be classified to two types

of models according to prediction style either from:
• the design parameters thus called ”defect density” mod-
els

• the test data thus ”software reliability growth” models.
Some known SRGM are Logarithmic, Exponential, Power,

S-Shaped and Inverse Polynomial models [19], [20]. They are
typical analytical models. They normally describe the fault
process as a function of execution time (or calendar time)
and a set of unknown parameters. The model parameters nor-
mally estimated using least-square estimation or maximum
likelihood techniques [13].

III. FUZZY MODELING

Fuzzy logic have been successfully used to solve variety
of problems in system identification, signal processing and
control [21]–[24]. Fuzzy modeling has been regarded as one
of the key problems in fuzzy systems research [25], [26].
In the past years, research focused on the development of
fuzzy systems from both theoretical and applications oriented
prospective were presented in [27]–[29].
A fuzzy model structure can be represented by a set of

fuzzy If-Then rules [30]. A fuzzy rule has two parts the
antecedent and the consequence. The antecedent variables
reflect information about the process operating conditions.
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The consequent of the rule is usually a linear regression
model which is valid around the given operating condition
[31]–[35].
Consider a dynamical system with a set on inputs x1,

x2, . . . , xn variables and y single output variable. The
relationship between these variables can be represented as:

y = f(x1, x2, . . . , xn) (1)

Our objective is to develop a fuzzy model structure which
describe the function f between the inputs xi, i = 1, . . . , n

and the output y. Knowing that the inputs and outputs are
measured at the sample time t; t = 1, 2, . . . , N . A fuzzy
model of a dynamic system for a multi-input single-output
(MISO) system has a set of rules of the following format:

Rk : If x1 is Ak1 and . . . and xn is Akn then
yk = ak1x1 + ak2x2 + · · ·+ aknxn + ak0 (2)

where k is the rule number. For example, if we want to
model a three input n = 3 single output system using two
rules i = 1, 2. The system can be represented as follows:

R1 : If x1 is A11 and x2 is A12 and x3 is A13 then
y1 = a11x1 + a12x2 + a13x3 + a10

R2 : If x1 is A21 and x2 is A22 and x3 is A23 then
y2 = a11x1 + a12x2 + a13x3 + a20

where y1 is the output corresponding to the region of values,
in the input domain, of the variables x1, x2, x3 based a set
of membership function A11, A12 and A13.
The inner-product space for the fuzzy set Ai, which defines

the fuzzy region in the antecedent space, can be described
as:

Ai =
n∏

j=1

Aij = Ai1 ×Ai2 × . . . Ain (3)

Thus, the degree of fulfillment is given by:

βi = μAi1(x1) ∧ μAi2(x2) ∧ . . . μAi1(xn) (4)

Other operator can be used to develop βi. The antecedent
part of the rule divide the input domain of x into a set of
fuzzy sub-domains. Each domain is corresponding to a fuzzy
set. The number of rules M can be computed as:

M =

n∏

i=1

Ti (5)

where n is the dimension of the input space (i.e. the number
of inputs) as described earlier and Ti is the number of terms
in the ith antecedent variables.

IV. PROPOSED FUZZY MODEL STRUCTURE
Our objective is to approximation the dynamics of the

fault measurements during the testing process and instead
of representing it in a single nonlinear model we can extend
it by a set of local linear models. Each local model should
be able to represents the relationship between the historical
faults y(k − 1), y(k − 2), y(k − 3), y(k − 4) and the current

fault y(k) in a certain range of operating conditions. Such
a proposed fuzzy model structure can be successfully repre-
sented by means of fuzzy If-Then rules. The proposed model
equation is given as follows:

y(k) = FM(y(k − 1), y(k − 2), y(k − 3), y(k − 4)) (6)

Using membership functions and the antecedent of the rule
we can define the fuzzy region in the product space. The
antecedent variables gives the condition of the process status
now. The consequent of the rule is typically a local linear
regression model which relates y(k) with y(k − 1), y(k −
2), y(k − 3), y(k − 4).
A rule-based fuzzy model requires the identification of the

following: 1) the antecedent 2) the consequent structure, 3)
the type of the membership functions for different operating
regions and 4) the estimation of the consequent parameters.
The developed fuzzy models implemented based the Takagi-
Sugeno technique [31], [32]. The proposed technique does
not require any a prior knowledge about the operating
regimes. If a sufficiently number of measurements are col-
lected which reflects the operating ranges of interest, the
developed fuzzy model will be an efficient one.

V. THE SOFTWARE RELIABILITY DATA

John Musa of Bell Telephone Laboratories compiled a
software reliability database [1]. His objective was to collect
fault interval data to assist software managers in monitor-
ing test status, predicting schedules and to assist software
researchers in validating software reliability models. These
models are applied in the discipline of software reliability
engineering. The dataset consists of software fault data on
16 projects. Careful controls were employed during data col-
lection to ensure that the data would be of high quality. The
data was collected throughout the mid 1970s. It represents
projects from a variety of applications including real time
command and control, word processing, commercial, and
military applications.
In our case, we used data from three different projects.

They are Real Time Control, Military and Operating System.
A MATLAB toolbox for modeling of fuzzy systems [36] was
used to implement the following results. The routines of
the toolbox contain the Gustanfson-Kessel (GK) clustering
algorithm, whose implementation is given in [37].

VI. VALIDATION CRITERIA

In order to check the performance of the developed model,
we compute the Variance-Accounted-For (VAF) performance
criterion to measure how close the measured values to
the values developed using the fuzzy models. The VAF is
computed as:

V AF =
[
1−

var(y − ŷ)

var(y)

]
× 100% (7)

where y, ŷ are the real actual output and the fuzzy model
estimated output, respectively.
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VII. EXPERIMENTAL RESULTS

We run the Fuzzy Model Identification Toolbox [36] along
with three membership functions. The data set was split into
two parts: 1) 70% of the collected data for training and 2 30%
for testing (i.e. validation). The set of rules which describe
the three software projects (i.e. Real Time Control, Military
and Operating Systems [1]) are presented in Tables I, II and
III.
In Figure 1, we show the membership function for the

real time control application. We used three clusters to build
the fuzzy model. Figure 2 show the actual and predicted
faults over the training and testing data for the real time
control applications. The fuzzy membership functions for
the military application and operating systems are shown in
Figures 3 and 5, respectively. Figure 4 and 6 show the actual
and predicted faults over the training and testing data for the
military and operating systems applications.
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Fig. 1. Membership functions for the Real-Time Control Applications
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Fig. 2. Actual and estimated responses in Real-Time Control Applications

The developed model’s performance were computed using
the VAF criteria and reported in Table IV. It can be seen that
the performance of the developed fuzzy model based histor-
ical data were achieving significant modeling capabilities.

40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

1.2

y(k−1)

µ

20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

1.2

y(k−2)

µ

20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

y(k−3)

µ

20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

y(k−4)

µ

Fig. 3. Membership functions for the Military Applications
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Fig. 4. Actual and estimated responses in Military Applications
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Fig. 5. Membership functions for the Operating System Applications

TABLE IV
VAF FOR THE FUZZY MODELS

Project Training Testing
Name VAF VAF
Military 99.9383 99.0606
Real Time Control 99.8693 95.2851
Operating System 99.9890 99.9044
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TABLE I
FUZZY RULES FOR REAL TIME AND CONTROL APPLICATIONS

1. If y(k − 1) is A11 and y(k − 2) is A12 and y(k − 3) is A13 and y(k − 4) is A14 then
ŷ(k) = 1.56 · 100y(k − 1)− 8.89 · 10−1y(k − 2)− 6.43 · 10−2y(k − 3) + 2.10 · 10−1y(k − 4) + 3.82 · 100

2. If y(k − 1) is A21 and y(k − 2) is A22 and y(k − 3) is A23 and y(k − 4) is A24 then
ŷ(k) = 1.56 · 100y(k − 1)− 8.19 · 10−2y(k − 2)− 1.16 · 100y(k − 3) + 5.87 · 10−1y(k − 4) + 5.38 · 100

3. If y(k − 1) is A31 and y(k − 2) is A32 and y(k − 3) is A33 and y(k − 4) is A34 then
ŷ(k) = 1.49 · 100y(k − 1)− 6.63 · 10−1y(k − 2)− 6.74 · 10−2y(k − 3) + 2.35 · 10−1y(k − 4) + 6.12 · 10−1

TABLE II
FUZZY RULES FOR MILITARY APPLICATIONS

1. If y(k − 1) is A11 and y(k − 2) is A12 and y(k − 3) is A13 and y(k − 4) is A14 then
ŷ(k) = 1.53 · 100y(k − 1)− 6.76 · 10−1y(k − 2) + 6.87 · 10−1y(k − 3)− 4.92 · 10−1y(k − 4)− 1.96 · 100

2. If y(k − 1) is A21 and y(k − 2) is A22 and y(k − 3) is A23 and y(k − 4) is A24 then
ŷ(k) = 2.36 · 100y(k − 1)− 5.90 · 10−1y(k − 2)− 1.84 · 100y(k − 3) + 1.07 · 100y(k − 4)− 1.27 · 100

3. If y(k − 1) is A31 and y(k − 2) is A32 and y(k − 3) is A33 and y(k − 4) is A34 then
ŷ(k) = 4.10 · 10−1y(k − 1) + 7.93 · 10−2y(k − 2) + 1.38 · 10−1y(k − 3) + 3.47 · 10−1y(k − 4) + 8.41 · 100

TABLE III
FUZZY RULES FOR OPERATING SYSTEM APPLICATIONS

1. If y(k − 1) is A11 and y(k − 2) is A12 and y(k − 3) is A13 and y(k − 4) is A14 then
ŷ(k) = 1.78 · 100y(k − 1)− 4.96 · 10−1y(k − 2)− 6.19 · 10−1y(k − 3) + 3.22 · 10−1y(k − 4) + 2.83 · 10−1

2. If y(k − 1) is A21 and y(k − 2) is A22 and y(k − 3) is A23 and y(k − 4) is A24 then
ŷ(k) = 1.53 · 100y(k − 1)− 7.57 · 10−1y(k − 2) + 9.33 · 10−2y(k − 3) + 1.23 · 10−1y(k − 4) + 2.52 · 100

3. If y(k − 1) is A31 and y(k − 2) is A32 and y(k − 3) is A33 and y(k − 4) is A34 then
ŷ(k) = 1.93 · 100y(k − 1)− 1.11 · 100y(k − 2)− 8.67 · 10−3y(k − 3) + 2.13 · 10−1y(k − 4)− 4.25 · 100
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Fig. 6. Actual and estimated responses in Operating System Applications

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we developed a set of fuzzy models for
predicting the reliability of software projects in various

applications. A fuzzy nonlinear regression models were de-
veloped for predicting the accumulated faults of software
engineering applications. The developed fuzzy models imple-
mented based the Takagi-Sugeno technique. The developed
fuzzy models were tested using three types of applications.
They are real-time control, military and operating systems
applications. The data set was developed by John Musa
of Bell Telephone Laboratories [1]. The results were very
promising.
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